Integral representation of renormalized self-intersection local times

نویسندگان

  • Yaozhong Hu
  • David Nualart
  • Jian Song
چکیده

In this paper we apply Clark-Ocone formula to deduce an explicit integral representation for the renormalized self-intersection local time of the d-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1). As a consequence, we derive the existence of some exponential moments for this random variable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks

We study moderate deviations for the renormalized self-intersection local time of planar random walks. We also prove laws of the iterated logarithm for such local times

متن کامل

Large Deviations for Renormalized Self - Intersection Local times of Stable Processes

We study large deviations for the renormalized self-intersection local time of d-dimensional stable processes of index β ∈ (2d/3, d]. We find a difference between the upper and lower tail. In addition, we find that the behavior of the lower tail depends critically on whether β < d or β = d.

متن کامل

Derivatives of self-intersection local times

We show that the renormalized self-intersection local time γt(x) for both the Brownian motion and symmetric stable process in R is differentiable in the spatial variable and that γ′ t(0) can be characterized as the continuous process of zero quadratic variation in the decomposition of a natural Dirichlet process. This Dirichlet process is the potential of a random Schwartz distribution. Analogo...

متن کامل

Markov Paths, Loops and Fields (preliminary Version)

We study the Poissonnian ensembles of Markov loops and the associated renormalized self intersection local times.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008